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1 Introduction
The following are notes I prepared for an hour guest lecture in advanced
logic at Rice University in the Spring of 2011. Most of the material is drawn
from Dirk van Dalen’s article “Intuitionistic Logic” (2002), Carnielli et al
Analysis and Synthesis of Logic (2008), Steve Awodey, Category Theory (2006),
and Olaf Beyersdorff and Oliver Kutz’s lecture notes from ESSLLI 2010 on
proof complexity of non-classical logics.

2 Familiar Territory: CPC

2.1 Boolean Algebras

A Boolean algebra consists of a set B which contains (at least) the two
elements > (“top”) and ⊥ (“bottom”) and the operations u (“meet”), t
(“join”) and − (“complement”) such that for all x,y ∈ B,

1. u and t are commutative and associative

2. (xu y)t y = y and (xt y)u y = y

3. u is distributive w.r.t. t and vice versa

4. −(−x) = x

5. −(xt y) = (−x)u (−y) and −(xu y) = (−x)t (−y)

6. xu> = x and ⊥u x =⊥

7. xt (−x) => and x∩ (−x) =⊥



When no confusion arises we denote a Boolean algebra by its underlying
set B, although it’s properly specficed by the whole tuple

(B,u,t,−,>,⊥)

We can also give Boolean algebras special names when convenient, as we
do below. Note that we can define a partial ordering ≤ on B by setting

x ≤ y ⇔ xu y = x

Clearly top > is maximal w.r.t. this ordering, while bottom ⊥ is minimal.

2.2 Examples

The Boolean algebra giving the standard semantics for CPC is something
like

({t, f },∧,∨,¬, t, f )

where ∧, ∨ and ¬ are the respective operations on {t, f } defined by the
usual truth tables. We’ll denote this Boolean algebra by 2. Let X be a set
and P (X) its power set. Then

(P (X),∩,∪, /,X,∅)

is a Boolean algebra. The ordering relation induced on the Boolean algebra
P (X) turns out to be subset inclusion ⊆. Let ats be some set of propositional
atoms such as {p1,p2,p2, . . .} and let L be the set of all formulas of CPC
generated over ats by the connectives ∧, ∨, ¬, ⊃ and ≡. For ϕ,ψ ∈ L, define
an equivalence relation

ϕ ∼ ψ⇔ CPC ϕ ≡ ψ

Write [ϕ]∼ for the equivalence class of ϕ. Then if L/ ∼= {[ϕ]∼ : ϕ ∈ L} is the
set of equivalence classes,

(L/ ∼,∧,∨,¬, [p1 ∨¬p1]∼, [p1 ∧¬p1]∼)

is a Boolean algebra, called the Lindenbaum algebra. The operations are
defined in the obvious way: [ϕ]∼ ∧ [ψ]∼ = [ϕ ∧ψ]∼, [ϕ]∼ ∨ [ψ]∼ = [ϕ ∨ψ]∼
and ¬[ϕ]∼ = [¬ϕ]∼. Denote the Lindenbaum algebra of CPC by LCPC.
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2.3 Basic Results

A valuation of L in (B,u,t,−,>,⊥) is given by an assignment v : ats→ B
which is extended to all of L as follows:

1. v(ϕ ∧ψ) = v(ϕ)u v(ψ)

2. v(ϕ ∨ψ) = v(ϕ)t v(ψ)

3. v(¬ϕ) = −v(ϕ)

4. v(ϕ ⊃ ψ) = v(¬ϕ ∨ψ)

5. v(ϕ ≡ ψ) = v((ϕ ⊃ ψ)∧ (ψ ⊃ ϕ))

A formula ϕ ∈ L is valid in B if and only if v(ϕ) => for all valuations v of L
in B.

Theorem:

CPC ϕ⇔ ϕ is valid in 2.

Proof:
Found in any logic text.

Theorem:

CPC ϕ⇔ ϕ is valid in every Boolean algebra B.

Proof:
Soundness, i.e. that CPC ϕ⇒ ϕ is valid in every Boolean algebra B, is

easily checked.
Completeness, i.e. that CPC ϕ ⇐ ϕ is valid in every Boolean algebra

B, can be seen by considering that if ϕ is valid in every Boolean algebra,
then in particular it’s valid in LCPC. Hence every valuation of L in LCPC is
s.t. v(ϕ) = [p1 ∨¬p1]∼. In particular consider the valuation which sends all
formulas ψ to the element [ψ]∼. So [ϕ]∼ = [p1 ∨¬p1]∼. By definition of ∼,

CPC ϕ ≡ (p1∨¬p1). Clearly any proof of ϕ ≡ (p1∨¬p1) can be extended to
a proof of ϕ.

An alternative proof of completeness is that ifϕ is valid in every Boolean
algebra, then in particular it’s valid in 2. But by the last theorem, this
implies that CPC ϕ.
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3 Heyting Algebras and IPC

3.1 Heyting Algebras

A Heyting Algebra consists of a set H which contains (at least) the two
elements > (“top”) and ⊥ (“bottom”) and the operations u (“meet”), t
(“join”) and→ (“exponential”) such that for all x,y,z ∈ H,

1. u and t are commutative and associative

2. (xu y)t y = y and (xt y)u y = y

3. x→ (y u z) = (x→ y)u (x→ z)

4. xu (x→ y) = xu y and (x→ y)u y = y

5. (x→ x)u y = y

6. xu> = x and ⊥u x =⊥

Again a partial ordering can be defined on a Heyting Algebra so that x ≤ y
⇔ xu y = x. Every Boolean algebra forms a Heyting algebra by defining
x→ y = (−x)t y. Besides Boolean algebras, the most natural examples of
Heyting algebras are topological spaces: if X is a set and OX a topology on
X, then

(OX ,∩,∪,→,X,∅)

where U → V = ((X/U ) ∪ V )◦, for U,V ⊆ X open (i.e. U,V ∈ OX ,) is a
Heyting algebra.1 Another example of a Heyting algebra is the Lindenbaum
algebra for IPC: it is constructed over L exactly as with LCPC, except this
time ϕ ∼ ψ⇔ ϕ and ψ are logically equivalent in IPC and we have to pick
different representatives for top and bottom, say p1 ⊃ p1 and ¬(p1 ⊃ p1).
We denote this Heyting algebra by LIPC.

To see that not every Heyting algebra is Boolean, consider that if com-
plement − is to be defined on a Heyting algebra it must be −x = x → ⊥.
In a Boolean algebra xt−x = >, but this isn’t necessarly so in a Heyting
algebra. When H is a topological space OX and U,V ∈ OX , −U = (X/U )◦,
U tV =U ∪V and > = X. So U t−U =U ∪ (X/U )◦, which isn’t necessarly
X. Consider the following counter example.

1For Y ⊆ X, Y ◦ is the interior of Y , i.e. the union of all open sets U ∈ OX contained in
Y .
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The standard topology O
R

on R can be given as follows. For x,r ∈ R,
let Bx,r = {y ∈ R : |x − y| < r}. Then O

R
is the smallest subset of P (R) s.t.

R,∅ ∈ O
R

, Bx,r ∈ OR for all x,r, the union of any collection of sets in O
R

is itself in O
R

and the intersection of any two sets in O
R

is itself in O
R

.
Now note that {x : 0 < x} ∈ O

R
. If we call this set U , −U = {x : 0 > x}, so

U ∪−U =R/{0} ,R.

3.2 Basic Results

As before, a valuation of L in (H,u,t,→,>,⊥) is given by an assignment
v : ats→H which is extended to all of L as follows:

1. v(ϕ ∧ψ) = v(ϕ)u v(ψ)

2. v(ϕ ∨ψ) = v(ϕ)t v(ψ)

3. v(¬ϕ) = −v(ϕ) = v(ϕ)→⊥

4. v(ϕ ⊃ ψ) = v(ϕ)→ v(ψ)

5. v(ϕ ≡ ψ) = v((ϕ ⊃ ψ)∧ (ψ ⊃ ϕ))

A formula ϕ ∈ L is valid in H if and only if v(ϕ) => for all valuations v of
L in H.

Theorem:

IPC ϕ⇔ ϕ is valid in O
R

.

Theorem:

IPC ϕ⇔ ϕ is valid in every Heyting algebra H.

Theorem:
There does not exist a single Heyting algebra H with only finitely many

elements s.t. IPC ϕ⇔ ϕ is valid in H.

Proof of Theorem 2.2:
As before, soundness can be shown by comparing the axioms for Heyt-

ing algebras against a proof system for IPC. Completeness is again proved
via the Lindenbaum algebra: if ϕ is valid in all Heyting algebras, it’s valid
in LIPC. So in particular the valuation v sending formulas ψ to [ψ]∼ is s.t.
v(ϕ) = [p1 ⊃ p1]∼, i.e. [ϕ]∼ = [p1 ⊃ p1]∼, so the proof of p1 ⊃ p1 in IPC can
be easily extended to a proof of ϕ.
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4 Heyting Algebras and Kripke Semantics

4.1 Review of Kripke Semantics

Recall that a Kripke modelM is given by a setW , the “worlds” or “points” or
“states”, a relation R ⊆W ×W which specifies which worlds are “accessible”
from which, and a function V :W →P (ats) which specifies which atomic
formulas are true in each world. We usually writeM = (W,R,V ). The usual
definition for satisfaction in a Kripke model is as follows:

1. M,w
Grz

p⇔ p ∈ V (w)

2. M,w
Grz

ϕ ∧ψ⇔M,w
Grz

ϕ and M,w
Grz

ψ

3. M,w
Grz

ϕ ∨ψ⇔M,w
Grz

ϕ or M,w
Grz

ψ

4. M,w
Grz
¬ϕ⇔M,w 6

Grz
ϕ

5. M,w
Grz

ϕ ⊃ ψ⇔M,w
Grz

ϕ implies M,w
Grz

ψ

6. M,w
Grz

ϕ ≡ ψ⇔M,w
Grz

(ϕ ⊃ ψ)∧ (ψ ⊃ ϕ)

If M,w
Grz

ϕ for all w ∈W we say that ϕ is “true” or valid in M and write

M
Grz

ϕ.
Also recall that if we restrict our attention to Kripke models M s.t. R is

a partial order—i.e. is reflective, transitive and antisymmetric—and assign-
ments V on W s.t. wRw′ ⇒ V (w) ⊆ V (w′) and we modify the satisfaction
relation we get a sound and complete semantics for IPC. Let us write ≤ for
the accessibility relation of such Kripke models and denote the worlds by
lower-case greek letters α,β, . . . Define:

1. M,α
IPC

p⇔ p ∈ V (α)

2. M,α
IPC

ϕ ∧ψ⇔M,α
IPC

ϕ and M,α
IPC

ψ

3. M,α
IPC

ϕ ∨ψ⇔M,α
IPC

ϕ or M,α
IPC

ψ

4. M,α
IPC
¬ϕ⇔ for all β ≥ α, M,β 6

IPC
ϕ

5. M,α
IPC

ϕ ⊃ ψ⇔ for all β ≥ α, M,β
IPC

ϕ implies M,β
IPC

ψ.
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6. M,α
IPC

ϕ ≡ ψ⇔M,α
IPC

(ϕ ⊃ ψ)∧ (ψ ⊃ ϕ)

The intuitive interpretation of these semantics for IPC is that the “states”
α represent moments in time and V (α) is “what’s known” at α. β ≥ α if
and only if β is a later time. As we move from one time α to a later time
β “what’s known” always increases, i.e. V (α) ⊆ V (β), and we can think of
theorems being proven as we progress through time. Then, for example,
¬ϕ holds at a time α just in case it’s impossible to ever establish a proof of
ϕ, i.e. if ϕ is never proven at a later time.

Let us call a Kripke model M whose accessibility relation is a partial
order and whose valuation is monotone over that order, i.e. α ≤ β ⇒
V (α) ⊆ V (β), a Heyting model. Then we have the following completeness
theorem:

Theorem:

IPC ϕ⇔M
IPC

ϕ for all Heyting models M.

4.2 Heyting Algebras from Heyting Frames

First some more terminology: those Kripke frames (W,R) s.t. R is a partial
order we’ll call Heyting frames. We’ll use H to denote arbitrary Heyting
frames. We can “view” a Heyting frame H as a Heyting algebra H = T (H).
Qua interpretation of formula, H and the corresponding T (H) are closely
related.

Let H = (W,≤) be a Heyting frame. Then there is a natural topology
we can associate with W : OW consists of the subsets U of W which are
closed upwards on ≤, i.e. if α ∈ U and β ≥ α, then β ∈ U . Note that
for α ∈ W , the sets Uα = {β : β ≥ α} form a basis for OW . We then set
T (H) = (OW ,∩,∪,→,W ,∅) where→ is defined as above. (So T is a function
from Heyting frames to Heyting algebras.)

Theorem:

1. For each Heyting model M = (W,≤,V ) on a Heyting frame H there is
a valuation vV on L in T (H) s.t. vV (ϕ) = {α :M,α

IPC
ϕ}.

2. Similarly, for each valuation v on L in T (H) there is a Heyting model
M = (W,≤,Vv) on the Heyting frame H such that Vv(α) = {p ∈ ats :
α ∈ v(p)}.
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Proof:
To show (1), note that the assignment V of M is a function W →P (ats)

which is monotone over the ordering ≤ of M. It induces a function
vV : ats → H by setting vV (p) = {α ∈ W : p ∈ V (α)}. By induction on
the construction of formulas it can be shown that the extension of this vV
to all of L yields a valuation on L in T (H) s.t. vV (ϕ) = {α : M,α

IPC
ϕ}.

Note that (2) is obvious, simply consider the valuation Vv so defined.

Corollary:
ϕ is valid in T (H)⇔M

IPC
ϕ for all M on H .

Proof:
(⇒) Assume that there exists someM = (W,≤,V ) onH s.t. M 6

I
ϕ. Then

there exists some α ∈W s.t. M,α 6
IPC

ϕ. Hence there exists some valuation
vV on L in T (H) s.t. α < vV (ϕ). Hence vV (ϕ) ,W , so ϕ is not valid in T (H).

(⇐) Similar to before, i.e. we want to prove the contrapositive, but this
time we must proceed by induction over the construction of ϕ. The details
get a bit gritty, so I leave it to the reader.

As a last comment, I’m pretty sure—although not positive—that if H is the
cannonical frame for Grz, then T (H) is isomorphic to LIPC as a Heyting
algebra. At least, if there is any justice in the world this is so!

5 Translations

5.1 Semantic Systems

The above connection between Heyting algebras and Heyting frames can
be set in a more general framework.2 Let L be a language, not necessarily
the language of CPC and IPC described above. Let X be a set and let be
a binary relation on X ×L. We call (X,L, ) a semantic system or something
similarly suggestive. The relation of a semantic system induces a conse-
quence relation between sets Γ of formulas from L and formulas ϕ from L by
setting Γ ϕ⇔ for all x ∈ X, x γ for all γ ∈ Γ ⇒ x ϕ. One may want
to restrict semantic systems by requiring that their induced consequence
relation satisfy some properties, e.g. ϕ ∈ Γ ⇒ Γ ϕ.

2For more information on the topics of this section, see Mossakowski et al. 2009.
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5.2 Translations

A translation (f1, f2) : S1 → S2 between semantic systems S1 = (X1,L1, 1
)

and S2 = (X2,L2, 2
) is a pair of functions f1 : L1→ L2 and f2 : X2→ X1 s.t.

for all x ∈ X2, ϕ ∈ L1:

f2(x)
1
ϕ⇔ x

2
f1(ϕ)

If we let HF be the set of all Heyting frames, HA be the set of all Heyting
algebras and write H

alg
ϕ when ϕ is valid in H and H

f rm
ϕ when

M
IPC

ϕ for allM onH , then Intalg = (HA,L,
alg

) and Intf rm = (HF,L,
f rm

)

are semantic systems with (id,T ) : Intalg → Intf rm as a translation. That is,
if id : L→ L is the identity function mapping formulas of IPC to themselves
and T is the function defined above sending Heyting frames to Heyting
algebras,

T (H)
alg

ϕ⇔ H
f rm

id(ϕ)⇔ H
f rm

ϕ

5.3 IPC and the Logic of Proofs

As sketched above, the Heyting model interpretation of intuitionistic logic
is suppose to reflect the fact that intuitionistic logic is the “logic of provabil-
ity” or that intuitionistic logic is “epistemic” in some sense. This intuitive
idea can be made precise by providing a formal translation between intu-
itionistic logic and Grz, Grzegorczyk logic, the modal logic where the box
operator � is meant to be read “there is a proof.”

Let Lm be the language of propositional modal logic and f : L→ Lm be
the Gödel-McKinsey-Tarski mapping which is defined inductively by

1. f (p) = �p

2. f (ϕ ∧ψ) = f (ϕ)∧ f (ψ)

3. f (ϕ ∨ψ) = f (ϕ)∨ f (ψ)

4. f (¬ϕ) = �¬f (ϕ)

5. f (ϕ ⊃ ψ) = �(f (ϕ) ⊃ f (ψ))

If HM is the set of Heyting models, then if we consider the semantic
systems Int = (HM,L,

IPC
) and Prov = (HM,Lm, Grz

) we have a translation
(f , id) : Int→ Prov. That is,
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id(M)
IPC

ϕ⇔M
Grz

f (ϕ)⇔M
IPC

ϕ

It further turns out that there is a connection with S4, that if ϕ is a formula
of IPC, then ϕ is (intuitionistically) valid in all Heyting models if and
only if it’s valid, on the usual definition of satisfaction, in all reflective and
transitive Kripke models.
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