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1. INTRODUCTION

1.1. Background. The Lowenheim-Skolem theorem was the first sig-
nificant result of model theory. It says that if ¥ is a signature of
cardinality A and I" C L, (X) a set of sentences with an infinite model,
then I' has infinite models of cardinality x for all K > A. Morley’s the-
orem was one of the first important extentions of Lowenheim-Skolem.
It says that if in addition I'" has only one model up to isomorphism of
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cardinality A for some uncountable ), then it has only one model up to
isomorphism for all uncountable A. The classical example of such a set
[' is the axioms for algebraically closed fields where we also include a
sentence fixing the characteristic of the field. It is well known that the
algebraic closure of a field is unique up to isomorphism. [Lan02, The-
orem V.2.8, Corollary V.2.9] It turns out, in addition, that for each
integer n there is, up to isomorphism, only one algebraically closed
field of cardinality A with Char = n, for all uncountable .

Michael Morley’s seminal 1965 paper [Mor65] is still easy to read
and accessible. But, some of Morley’s most important concepts—those
for type and rank—do not take the form one will find in a modern
text on model theory. Furthermore, because the theorem requires a
lot of theoretical tools to prove, modern texts often have the pieces
of the proof scattered throughout various chapters. My goal here is to
present a compact treatment of the proof that gives the big picture and
connects the definitions Morley used with the more usual ones given in
contemporary literature.

1.2. Notation. Ordinals are thought of as von Neumann ordinals, i.e.
sets of all preceding ordinals. Arbitrary ordinals are denoted by &, A, 9,
etc, while wy, or usually just w, denotes the ordinal containing all finite
ordinals. Cardinal numbers are identified with the smallest ordinal of
that cardinality, i.e. using the usual notation for ordinals, N; = w;.!
Finite ordinals—natural numbers—are denoted by m,n, etc. * = oo
means z = A for all ordinals A\. The terms ‘tuple’ and ‘sequence’ are
used interchangebly. We often aberivate finite tuples zi,...,z, and
infinite tuples (z;);<, by Z. The powerset of a set X is denoted P(X),
while the cardinality of X is denoted by #X, e.g. #N =R,. A quirk
of our convention of identifying cardinal numbers with ordinals is that
#w = w, or in general #w; = w;. I use the word ‘set’ as many would use
the word ‘class,” but try to avoid contexts where this is problematic.”

Calligraphic uppercase letters A, B, etc will denote structures. The
signature of a structure A, written o(A), is the set of function, relation
and constant symbols naming the functions, relations and constants of
A. If Ais a Y-structure, i.e. 0(A) = X, and F, R, and c are respectively
function, relation and constant symbols of 3, then F4, R4, and c¢* are
respectively the function, relation and constant of A named by them.

IThe index i here, of course, ranges over all ordinals: i.e. by the Axiom of Choice,
there’s no reason we can’t well-order the cardinal numbers, so writing X, for some
ordinal x makes sense.

2Foundational issues regarding the sizes of collections or other paradoxes of set
theory are not relevant to Morley’s theorem.
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If A is a substructure of B we write A < B. If A is a structure, |A| is
the domain of A.* If X C |A], (X) is the substructure of A generated
by X.*

If ¥ is a signture, L, (X) is the first-order language of £.° If T is
a set of formula, o(I") is the signature of I', i.e. the set of function,
relation and constant terms appearing in the formulas of I". (When

= {p} for some single formula ¢, we write o(¢).) If ¢ is a term of
L..,(X) containing variables 1, ..., z,, it is written t(z1,...,z,). Let
t(z) be a term of L,,(X) and ¥ C o(A), if a is a tuple of elements of
A at least as long as 7, then t4(a) is the element named by #(Z) when
a; is substituted for x;. If ¢ is a formula of L, () whose free variables
are among Ty, ...,T,, it is written @(z1,...,2,). Let p(Z) € Lyw(X)
and ¥ C o(A), if a is a tuple of elements of A at least as long as & and
A satisfies p(Z) when a; is substituted for z;, we write A |= p(a). If
© is a sentence, i.e. a formula without free variables, we simply write
A |= ¢ when A satifies ¢; by definition, if ¢ is a sentence and A |= ®,

then A |= p(a) for all a.

Given structures 4 and B such that o(A) = ¢(B) and a signature
¥ C o(A), a function f : |A] — |B] is a X-homomorphism if it pre-
serves all the functions, relations and constants of A named by . A
Y-embedding is an injective X-homomorphism such that f~! preserves
all the relations of B named by ¥.” A Y-isomorphism is a surjective -
embedding. When ¥ = o(A) and f : |A| — |B| is a ¥-homomorphism
(resp. Y-embedding) we simply call it a homomorphism (resp. embed-
ding) and write f : A — B (resp. f: A — B).

If A |= ¢ we say that A is a model of the sentence . The set
of all models of a sentence ¢ is Mod(p). If I' is a set of sentences,

Mod(T) = (,r Mod(y). We define T' [= ¢ if and only if Mod(T) C
Mod(p). Two sentences p,1) are equivalent if Mod(¢) = Mod(¢)).®

3As is made precise below, for any signature X, |-| can be thought of as the forgetful
functor from the category of Y-structures to Set.

40f course, if X C |.A| we could consider the sub-Y-structure of A generated by
X for any ¥ C o(A), but by substructure of A we shall always mean sub-o(A)-
structure.

®In infinitary logic, L.y (%) is the language generated on ¥ with at most < & vari-
ables quantified over and at most < A formulas joined in conjunctions/disjunctions.
SThat is, if (1) f(FA(a)) = FB(f(a)), (i) @ € R* = f(a) € R?, and (iii) f(c*) =
B,

"That is, b € RE = f~1(b) € RA.

8Note that this definition is independent of the signatures involved, so long as
Mod(yp) is defined as all the X-structures satisfying ¢ for ¥ D o ().
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Two formula ¢, are equivalent modulo I' for some set of sentences
rif - |= VZ(p <> 1). The equivalence class of ¢ modulo I' is written
[o]r. The set of sentences ¢ € Ly, (X) satisfied by some structure A
such that ¥ C o(A) is denoted Th(X,.A). Two structures A, B such
that 0(A) = o(B) are (first-order) ¥-equivalent, where ¥ C o(.A),
written A =y, B, if Th(X, . A) = Th(3, B); A = B means they are o(A)-
equivalent. If A, B are such that o(A) = o(B) and are Y-isomorphic
for some ¥ C o(A), we write A =5, B; A= B means A =, ) B.
Given a Y-structure A and two sets B, C indexed into tuples b, &
by the same index set I where B C |A|, then the C' expansion of ¥,
written 3(C') or X(¢), is the signature got by adding the elements of
C as constant symbols to 3. The B expansion of A, denoted (A;b) or

(A; B), is A viewed as a £(C)-structure by setting ¢"*® = b, Let
A, B be structures such that o(B) = 0(.A) and |A| C |B|, then B is an

elementary extension of A, or A is an elementary substructure of B,
written A < B, if the inclusion map i : |A| < |B| preserves all formula,

ie. for all p € L,,(0(A)), a a tuple of elements from A, A |= p(a)
if and only if B |= p(i(a)). Let @(z1,...,2,) € Lyw(X) and A be a
structure such that ¥ C o(A), then p(z1,...,x,) defines a set of tuples
of elements of A, i.e. the set {(as,...,a,) € [A" : AFE@(ar,. .., an)}.
The relation defined by some formula ¢(Z) in A is denoted ¢(A").
Further, we say that a relation is definable with parameters from some
subset A C | A] if it is (A", a) for some formula (7, y) and elements
a from A.

Finally, a set I' of sentences is called a theory if it is consistent,
ie. if Mod(I") # @. A theory T is complete if any two of its models
are o(T)-equivalent, or alternatively: T is complete if for all sentences
¢ € Lyw(o(T)), either T |= por T |= —p. A theory T is categorical
if every model of T is o(T)-isomorphic. T is A-categorical if every
infinite model of T of infinite cardinality A is ¥-isomorphic. T is totally
categorical if T is A-categorical for every infinite A. We can thus state
Morley’s theorem as follows:

Theorem 1.2.1 (Morley’s Theorem). Suppose T is a first-order theory
such that o(T) is countable and that it is A-categorical for some X\ > w,
then T is A-categorical for all A > w.

1.3. Caveats. This paper started as a term paper for a graduate level
algebra course at Rice University. Overall the exposition is neither

9Throughout this paper we will normally just let C' = B, so the signature is ex-
panded by adding the elements themselves as constant symbols.
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rigorous nor complete, but hopefully it will be a good guide. Almost
nothing of substance below is original to myself—that is, neither the
definitions nor theorems originated with me—although I have written
the proofs and prepared the presentation. I have drawn heavily from
Morley’s own work, Hodges’s excellect text [Hod97] and David Marker’s
article [Mar00], as well as several other cited sources.

Indeed, this paper is incomplete in two senses: first it assumes the
reader knows the basics of model theory. One should be acquainted
with all the concepts mentioned in the above remarks on notation.
Second, I have not yet finished writing it. There are five or six proofs
that still need to be written. Please email any comments, questions or
criticism to mbarkb51@live.kutztown.edu.

2. BASIC DEFINITIONS

The proof of Morley’s theorem will follow directly from three lem-
mas. The lemmas require defining the notions of type, saturation and
stability. One will find more than a few different, but equivalent, defi-
nitions of a type in the literature.

2.1. Types. Roughly, we can think of compete n-types as all the things
true of a tuple in a structure that can be said with “parameters.”
[Hod97, 130] Let A be a X-structure, B C |A| the parameters, a an
n-tuple of elements from 4 and ¥ an n-tuple of variables. Then:

Definition 2.1.1. tp4(a/B) is the set of all formula p(Z) € L, (X(B))
such that (A; B) |= o(a).

Now let F,(X) be the set of formulas in L, (X) with no free vari-
ables other than zq,...,z,. Note that if T is a theory and 3 D o(T),
B,(X) ={[¢]r : ¢ € F,(X)} is a Boolean algebra where

[el - [T = [ AT
[elr + Wl = [ VYo
—[plr = [~¢]r
1:=[z1 =m]7
0:=[~x =z

If A is a X-structure, the set of all closed atomic formulas and negated
closed atomic formulas of ¥(|.A|) which are satisfied by A is called the
diagram of A and denoted by D(.A).
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Definition 2.1.2. Let A be a Y-structure, B C |A|. The following are
equivalent and define a n-type of A over B."Y Let p C F,,(%(B)).

(1) for every finite subset p’ C p, there exists an n-tuple a of ele-

ments of A such that A |= p(a) for all p € p'.
(2) p Ctpa(a/B) for some n-tuple a of elements of A', A < A’
(3) [plt = {[p]r € Bn(X(B)) : ¢ € p} is a filter of B, (X(B)), for
T = Th(X, A) U D((B))

Note that p = tpa(a/B) if and only if [p]r is an ultrafilter if and only
if for all ¢ € F,(X(B)), either ¢ € p or ~¢ € p. If any of these hold
we say that p is a complete n-type of A over B. We say the elements
a realize the complete n-type p if p C tpa(a/B).

Let T, B and A be as in def. 2.1.2. Let S(B,(X(B))) be the stone
space of B,(X(B)), i.e. the set of ultrafilters. Note that the subsets
Vo ={z € S(B,(X(B))) : [¢|r € x} for ¢ € F,(X(B)) generate the
Stone topology. Then if we write S,(B/.A) for the set of all complete
n-types of A over B and let U, = {p € S,(B/A) : ¢ € p} for each
¢ € F,(X(B)), we recover the Stone space and Stone topology in the
obvious way: S(B,(X(B))) = {[plr : p € Su(B/A)} and V,, = {[p|r :
p € U,}. For this reason we generally call S,,(B/A) the Stone Space
as well.

2.2. Saturation. An important property of structures is saturation,
in fact the following elementry result shows that it’s so important that
Morley’s theorem reduces to a statement about saturation. Informally,
being A-saturated means that anything that can be said with less then
A elements about an element of some elementary extension of A is true
of some element in A. Given a Y-structure A,

Definition 2.2.1. A structure A is A-saturated if and only if for every
subset B C | A| of cardinality less than A, all p € S1(B/.A) are realized
by elements of A. A is saturated if A is #|.A|-saturated.

Lemma 2.2.2 ([Hod97, Theorem 8.1.8]). If A = B and A, B are of
the same cardinality, then if A, B are both saturated, then A = B.

Given lemma 2.2.2, proving Morley’s theorem reduces to showing
that if T is a complete A-categorical theory for some A > w, then every
uncountable model of T is saturated. Note that if A is saturated then
by induction we have that for all B C |A| such that #|B| < #|.A|, all
p € S,(B/A) are realized in A, for all n.

10A proof that these three conditions are equivalent will be provided in a later draft.
Note that (3) is used by Morley to define type, [Mor65, 518] while Hodges uses (1).
[Hod97]
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2.3. Stability. Given lemma 2.2.2; the proof of Morley’s theorem fol-
lows immediately from two lemmas that will be given below. Before
giving them we must define the notion of stability.

As Hodges describes, algebraists often think of algebraically closed
fields as “big models” of the field axioms, in the sense that they gen-
erally like to think of fields as their images in their algebraic closure.
If it weren’t for set-theoretic paradoxes model theorists would like to
talk about “big models” of any old complete theory T, in the sense
that any model of T could be thought of as its image in the big model.
[Hod97, 211-2] To borrow a phrase from Hodges, they draw in their
horns though and settle for something less:

Definition 2.3.1. Given a signature 3, a Y-structure A is A-big if and
only if for every subset B C |A| with cardinality less than \, (A; B) is
such that if ¥’ is 3(B) with relation symbol R added, B a '-structure
such that (A;b) =x(p) B, then we can interpret R by a relation RMAB)
making (A; B) a ¥'-structure so that (A; B) = B.

If A is A-big, B another structure of cardinality less than A and
A = B, then B 5 A. [Hod97, 212] In other words, A is A-big if we can
view all equivalent structures smaller than A\ as substructures of A. As
a fact I leave unproved, any algebraically closed field of infinite tran-
scendence degree and characteristic n is A-big. Hence it will be a “big
model” of the axioms for alegrabically closed fields with characteristic
n. [Hod97, 217] As should not be hard to imagine, being A\-big implies
being A-saturated. It follows that all uncountable algebraically closed
fields are saturated. What makes being A-big useful is that just like
algebraic closures always exist, A-big extensions of structures always
exist. [Hod97, Theorem 8.2.1]

The last important property is stability. Let T be a complete theory
and let ¥ be some very large cardinal that’s possibly inaccessable. Let
M be a ¥-big model of T, call it the monster model of T.

Definition 2.3.2. For A < ¢ we say that T is A-stable if for every model
A of T and every set B of at most A elements of A, #S5;(B/M) < A.

2.4. The Category ./ (T). Note that the notion of a monster model
allows us to define a category that will be useful in proving the following
lemmas. If T is a complete theory, let M be a monster model of T. If
Y = 0(M), define the category of X-Structures over T, A (T, M), by
letting:

(1) Ob(A (T, M)) ={A: A< M}
(2) Hom gy (p o (A, B) ={f:f: A— B}
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That is, the objects of A (T, M) are the substructures of M while the
arrows (morphisms) are the embeddings between the substructures.
Note that some structures A € Ob(4 (T, M)) might not be models
of T, although since T is complete every one of its models (which is
smaller than M) is an object of A (T, M).'" Since it normally doesn’t
matter what M is choosen we shall write .4"(T) instead of A4 (T, M).

2.5. Two Lemmas. Now the following lemmas connect together the
notions of stability and saturation in a way that yields Morley’s theo-
rem.

Lemma 2.5.1 ([Hod97, Corollary 9.4.6]). If T is a theory in a count-
able language L., (2) and is A-categorical for some X > w, then T is
w-stable.

Lemma 2.5.2 ([Mor65, Theorem 5.5)). If T is a theory in a countable
language L, (%), is A-categorical for some A > w and is w-stable, then
all uncountable models of T are saturated.

Lemma 2.5.2 was the crucial lemma proved by Morley in [Mor65],
using a generalization of Krull dimension to arbitrary relations on struc-
tures now called Morley rank. Lemma 2.5.1 is proved using elementry
model-theoretic results of Skolem along with the work of Ehrenfeucht
and Mostowski.

3. STRUCTURES FROM LINEAR ORDERINGS

In order to prove lemma 2.5.1 we are going to assume we have some
monster model M for the theory T mentioned in the antecedent. We
can do this because assuming T has no finite models, T being \-
categorical implies that T is complete too. Hence every model of T
can be thought of as a substructure for some monster model. If the
monster model we picked isn’t big enough we silently pick a bigger
monster model.

3.1. EM Structures. The special sort of substructures we want are
called Ehrenfeucht-Mostowski structures. They are structures gener-
ated from linearly ordered sets, i.e. sets with an ordering relation that
is irreflexive, transitive and total, although the linear ordering on the
set may have nothing to do with the structure itself. Given a signature
Y, a X-structure A, linear ordering n contained in A whose ordering

HEor example, let ¥ be the signature of fields and T the axioms for algebraically
closed fields of infinite transcendence degree with characteristic 0. Then {1,0} is a
sub-X-structure of C and so {1,0} € Ob(A4(T,C)), but {1, 0} is not a model of T
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relation need not have anything to do with A, [n]* the set of all finite
sequences ay, ..., ax of a; € n such that ay <" ... <" a,, then

Definition 3.1.1. For all complete theories T, an Fhrenfeucht-Mostowsks
functor in T, an EM functor for short, is a functor

F OI‘dL — N (T)
that is a functor from the category of linear orderings to the category
of Y-structures over T, such that

(1) For each linear ordering 7, F(n) is generated by 7.
(2) For each embedding f : 7 — & of linear orderings,

F(f): Fn) — F(E)
is a structure embedding extending f in the natural way.
Note that since 1 generates F(n), every element of F(n) is of the form
t7 (@) for some a € [n)*.
Definition 3.1.2. (1) The theory of n in A, Th(A,n), is the set
of all (a1, ..., 1) € Luw(o(A)) such that A= o(a), vVa € [n]*.

(2) The theory of the EM functor F : Ordy, — A(T), Th(F),
is the set of all p(z1,...,z1) € wa( (T)) such that for every

linear ordering n and every a € | |= v(a

Definition 3.1.3. (1) A linear ordermg n is go—mdzscerm’lzle in A
containing 7 for some p(7) € L, (%) if for any two a,b € [n]*,
A ¢(a) iff A ().
(2) A linear ordering is indiscernible if it is -indiscernible for all
©.
3.2. Sliding. The following results are important facts about EM mod-
els that will be used below. The first result is usually called sliding.

Theorem 3.2.1 ([Hod97, Theorem 9.1.1]). If F is an EM functor in
Y and n, & are linear orderings and d € [ ¥, b e [§]k, then for every

quantifier-free p(xq,...,x) € Lyw(2 |: w(a) iff F(§) |: o(b)

Proof. Find a linear ordering ¢ and embeddlngs fm—=>¢g:&—C
such that f(a) = ¢g(b). Consider

Fi) 0 7o) Fe

It follows almost trivially from the definition of a structure embedding
that structure embeddings preserve quantifier-free formula, i.e. glven
h:A— A and ¢(Z) quantifier-free, A |= p(a) iff A/ |= w(h(a)). The
theorem follows quickly from the fact that F(f), F(g) are structure
embeddings. 0
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Theorem 3.2.2 ([Hod97, Lemma 9.1.3]). If F is an EM functor in ¥,

n an infinite linear ordering, and F(n) |= @ for a formula ¢ built up
from quantifier-free formulas by means of \, \/ and universal quantifi-
cation at most, then ¢ € Th(F).

Proof. Assume ¢ is Yz (Z) with ¢ quantifier-free. Let ¢ be any lin-
ear ordering and a a sequence of elements from F({). Since { gener-
ates F((), there is some finite subordering (y of ¢ such that a is in
F((o). Since n is infinite, there is an embedding f : {, — 7. Since

Fn) V(). Fn) | 0(F(1)(@)), so F(G) | (@), since (i) was
quantifier-free. Hence F(() |= Y(a). Since ¢ and a were arbitrary,
¥(x) € Th(F), so it trivially follows that ¢ € Th(F). Since all ¢
built in the way described can be put in this form, this completes the
proof. O

3.3. A Sufficient Condition for EM Functors. Here we describe a
sufficient condition on complete theories T for the existance of an EM

functor F : Ordy, — A(T).

Theorem 3.3.1. Let A be a X-structure containing w as generators.
If Th(3,A) is a Skolem theory and w is p-indiscernible in A for all
atomic formula ¢ of L,,(X), then there exists an EM functor

F :Ordg, — A (ThE, A))
such that A = F(w)."”

Proof. Note that the proof will be provided in a later draft. The machi-
nary developed in sections 3.1 and 3.2 is used in the proof. 0

This result essentially says that any Skolem theory T with an infinite
model has models that are generated by indiscernible sequences 7, for
all linear orders 7).

3.4. Proof of Lemma 2.5.1. Now we come to the proof of lemma 2.5.1.
We will need one more lemma.

Theorem 3.4.1 ([Hod97, Theorem 9.1.7.b|, Thinning). Given a Skolem
theory T in L, (X) and A an EM model of T, if n for A= F(n) is not
only a linear ordering but also is well ordered, i.e. each subset has a

I2Note that this functor is unique up to a natural isomorphism on functors. If
we did not require EM functors F to send linear orders into .4#'(T) this would
be what Hodges calls the stretching theorem [Hod97, Theorem 9.1.4]. But since
we do require it, this theorem also subsumes the Ehrenfeucht-Mostowski theorem
[Hod97, Theorem 9.1.6].
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smallest element, and B is a subset of F(n), then the number of com-
plete 1-types over B that are realized in A is at most # L, (%) + #B.

Proof. The well ordering condition on 7 is equivalent to assuming that
7 is a ordinal, so assume 7 is a ordinal. Note that any element § € B
is of the form tg(") (bg) for some term tg(Z) of L., (¥) and increasing

sequence bs from 7. Let W be the smallest subset of 1 such that all
bg, B € Bliein W. So #W < #B + w. Now let #(3) be any term of
L,.,(X). Since 7 is an indiscernible sequence for F(n), which follows
from theorem 3.2.1 and lemma 3.2.2, for each increasing ¢ from 7 the
type of the elements ¢/ f(")(é) over B is completely determined by the
positions of the elements of ¢ relative to the elements of W in 7. Since
7 is well-ordered, there are at most #W +w ways that ¢ can lie relative
to W. So the elements #7"(¢) with ¢ increasing in 7 account for at
most #W 4w complete types over B. Since there are at most #L,,,(2)
terms t'(y), yielding a total of #W +#L,.,(X) = #B+#L,.(X) types
of elements over B." U

Proof of lemma 2.5.1. Let T be a theory in a countable language Ly, (%)
and be A\-categorical for some A > w. If T is not already a Skolem the-
ory we Skolemize T to a theory TT in a countable language L, (X7).
By theorem 3.3.1, there is an EM model F(X) of T*. Let X be any
countable set of elements of F()). Since A is well-ordered, the thinning
theorem tells us that at most countably many complete 1-types over
X are realized in F()A). Hence the same is true in any ¥-structure A
such that F(\) =5 A.

Now suppose that T is not w-stable. Let Y be a countable set of ele-
ments of the monster model M such that S;(Y/M) is uncountable. By
the downward Lowenheim-Skolem, there exists an A’ C M with cardi-
nality A that contains Y and elements realizing uncountably many of
the types in S;(Y M). But A-categoricity implies that A" is isomorphic
to A, but only countably many complete 1-types are realized in A, so
T is w-stable. U

4. DIMENSION THEORY

The goal of this section is to canvas the proof of lemma 2.5.2. The
main tool needed for the proof is the dimension theory that Morley
built around the Stone spaces of 1-types.

138econd half of the proof taken directly from [Hod97, 256].
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4.1. Stone Spaces as Contravariant Functors. Let T be a com-
plete theory and let M be a monster model of T. Through out this
section we will “work in” M without reference to it, or rather we will
“work in” A(T). Hence all Stone spaces of complete 1-types w.r.t.
X, written S;(X), are Stone spaces of complete 1-types of M w.r.t X,
ie. S1(X) := S1(X/M), and X is assumed to be the domain of some
substructure of M, i.e. X = |A| where A < M. Thus we want to
view the Stone space construction as a contravariant functor from the
category of Y-structures over T to the category of topological spaces.

Given an embedding f : A — B (again assuming that A4, B < M),
let f: Fi(2(JA]) — Fi(2(B]) be defined by letting f(¢)) be the
formula obtained by substituting, for each a € A, the term naming
f(a) for each occurance of the term naming a in 1. Then,

Definition 4.1.1. Let the contravariant functor S; : A (T) — Top
be defined so that for A € Ob(A(T)) and f € Hom 4 (1)(A, B),

A— Si(|A])
[ A= Br—= 51(f) : S1(1B]) — Si(|Al)
where S;(f) is defined so that p — f~1(p). We will aberviate S;(f)
with f*.

Note that f* is continuous, f*_l(U¢) = Ujp and f* surjective. If
|A| € |B| and i : |A| < |B| is the inclusion map and p € S;(|B|), then
i*(p) = pNSi(JA]). The image of A (T) in Top under S; is a category
and is the dual to 4/(T). Following Morley we denote it by € (T).

4.2. Rank. Now we come to the crucial definition. Given a stone
topology S1(X) (where again X = |A| for some A < M), we define
subtopologies S7(X) and Tr"(X) as follows.

Definition 4.2.1. For each ordinal k,

(1) S7(X) = Su(X) = |J TH(X).
A<k
(2) p e Tr"(X) if and only if
(a) p € SY(X), and
(b) forall B € Ob(A4"(T)) and all f* € Homg 1) (S1(|B]), S1(X)),
" Hp) N SE(IB]) is a set of isolated points in S¥(|B])."*

YA point p € SF(|B|) is isolated if p € U, C Z for some Z C SF(|B|) and ¢ €
F1(X(]B])) such that no other points p’ of SF(|B]) are in Z. Consider the case
when k = 0, then S¥(A) = S1(A). From a logical point of view, an isolated point
of S1(|A|), i.e. of SY(JA|), is a set p of formulas from L., (3(A)) with one free
variable that is maximally consistent with Th(X, . A) and such that each ¢ € p is
inconsistent with any other such formula not in p.



AN EXPOSITION OF MORLEY’S THEOREM 13

Definition 4.2.2. p € S,(X) is algebraic if p € Tr*(X); p is transcen-
dental in rank k if p € Tr"(X).

The contemporary notion of Morley rank, which assigns a rank RM (¢)
to each formula ¢ € F,(X), was first introduced and interpreted in
terms of Morley’s work by Lachlan in [Lac71]. For each ¢ € F,(3),
RM(yp) is either —1, an ordinal or co. One can see a text like [Hod97,
265] for a definition of RM(¢) not in terms of Tr"(.A). In the case
when ¢ € F1(X(]A])), the relationship between Tr"(|.A|) and RM ()
is as follows, [Bal73, 40]

-1 if p(A) =2
RM (p) =
() {sup{/f :3dp e Uy, p e Tr"(|A])} otherwise

Generalizing the definition of S§(|.A|) to a subspace S/ (|.Al), RM(p)
can be defined in a similar way for all ¢ € L, (3(|.A])).

It can be proven that if o(M™) = (M"), then RM () = RM ().
Hence Morley rank can be assigned to all definable sets X C M™ so
that RM (X) = RM(p) for X = p(M™). [Hod97, Lemma 9.3.2]

For an example, assume that M is some algebraically closed field
of char= 0 (and hence a monster model for the field axioms, which is,
of course, a theory we’ll denote by Ty.) If X C M" is an irreducible
algebraic set, i.e. an algebraic variety, then RM(X) is the Krull di-
mension of X. [Hod97, 264] This fact isn’t surprising considering the
definition of RM () in terms of Tr"(A) and the fact that complete
types are, roughly, dual prime ideals of B, (3(|.A4])). If M = C and
@ € Ly,(0(Ty)(C)) defines a variety V', then RM () is the dimension
of V' as a complex manifold.

4.3. Totally Transcendental Theories. Morley proved the follow-
ing lemma which we leave unproved. From it we define the important
notion of a totally transcendental theory. For all complete theories T

Lemma 4.3.1 ([Mor65, Lemma 2.6]). (1) There is an ordinal ar <
(28T which is the least ordinal such that for all A € A (T)
and all k > ar, ST7(A) = SF(A).

(2) Further, if S{7(A) = @ for some A € AN (T), then ar is not
a limit ordinal and for every B € A (T), S{"(B) = @ and
SH(B) =@ for any k > ar.

Definition 4.3.2. A theory T is totally transcendental if S77(A) = &
for some (and hence every) A € A(T). Equivalently, T is totally
transcendental if RM (x = x) < oo, for RM defined w.r.t. the monster
model M of T.
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By def 4.3.2 and lemma 4.3.1, if T is totally trascendental we have
that S¥(A) = @ for all Kk > ar, and by def 4.2.1 we have ST (A) =
S1(A) = Uscar Tr*(A), so Si(A) = Uscar Tr*(A). In other words,
every type of a totally transcendental theory is transcendental in some
rank .

4.4. Proof of Lemma 2.5.2. Given this definition, we can state three
lemmas from which lemma 2.5.2 quickly follows.

Lemma 4.4.1 ([Mor65, Theorem 2.8]). T is totally transcendental if
and only if it s w-stable.

Lemma 4.4.2 ([Mor65, Theorem 5.2]). If T is totally transcendental
and \ > w, then there is a model A of T such that #|A| = X which is

saturated over its countable substructures.

Lemma 4.4.3 ([Mor65, Theorem 5.4]). If T is totally transcendental
and has an uncountable model which is not saturated, then for each
A > w, T has a model of size \ that is not saturated over any of its
countable substructures.

Proofs for these three lemmas will be provided in a later draft. For
now, we can give the two most exciting proofs:

Proof of lemma 2.5.2. Let T be a theory in a countable language L, (%),
be A-categorical for some A > w and be w-stable. Assume that not
all uncountable models of T are saturated, say there is an uncount-
able non-saturated model A of size k. T is totally transcendental by
lemma 4.4.1. By lemma 4.4.3, for all 6 > w T has a model of size ¢
that is not saturated over any of its countable substructures. In par-
ticular T has a model of size A which is not saturdated over any of its
countable substructures. But this is impossible, since by lemma 4.4.2,
there is a model B of T of size A which is saturated over its countable
substructures and T is A-categorical, i.e. A = B. Therefore T cannot
have a countable, non-saturated model. [

Proof of Morley’s Theorem. It now follows from lemmas 2.5.1, 2.5.2
and 2.2.2 that if T C L, (X), ¥ countable, is A-categorical for some
A > w, then T is A-categorical for all A > w. O
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