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1 Introduction
What follows is a mildly polished write up of the material given in a
casual presentation (6/2/2011) on the “Frege-Hilbert debate” to STUMPS
(Student Mathematical Philosophy Seminar) at Rice. One will find a list
for further reading at the end. I implore the reader for charity and ask that
she understand that the following is not intended to be groundbreaking,
original, or a substantial piece of academic research. (My treatment is
largely drawn from the sources in the reference section.) As the title says,
it is a quick write up of my take on an interesting historical debate.

2 Frege’s Logicism
Frege sets out and executes his logicist project in three seminal works:
Begriffsshrift (1879), Grundlagen der Arithmetik (1884) and Grundgesetze der
Arithmetik (1893/1903). In Grundlagen he states his goal as:

Now here it is above all Number which has to be either defined
or recognized as indefinable. This is the point which the present
work is meant to settle.

After giving the desired definitions he sketches out how basic facts of
arithmetic follow from them and “principles of logic” alone, while in
Grundgesetze he carries out a more rigorous derivation of the Dedekind-
Peano axioms from the definitions and axioms for his system of (second-
order) logic plus his theory of extensions.

But what does Frege mean when he says he wants to define number?
By the time of writing Dedekind’s axioms for the natural numbers (and
successor function) were well known. They are, more or less, as follows:



Dedekind-Peano Axioms:

1. Zero is a natural number.
2. The successor of every natural number exists and is a natural number.
3. Zero is not the successor of any natural number.
4. The successor function is injective.
5. If a subset of natural numbers contains zero and is closed under the

successor function, then that subset is all of the natural numbers.

Letting ‘Nx’ intuitively stand for “x is a natural number” and ‘s(x)’ be the
successor of x, these can be written:

Dedekind-Peano Axioms, Formalized:

1. N0
2. ∀x(Nx⇒∃y(Ny ∧ s(x) = y))
3. ¬∃x(Nx∧ s(x) = 0)
4. ∀x∀y(s(x) = s(y)⇒ x = y)
5. ∀X((X0∧∀x(Xx⇒ Xs(x)))⇒∀yXy)

The goal is to give definitions for the relation N , the constant 0 and the
function s so that the above formal sentences can be derived (once ‘Nx,’
‘0,’ and ‘s(x)’ have been replaced in them by the definitions) from just
“principles of logic.” Setting aside his defunct theory of extensions, the
logic which Frege actually uses is equivalent to the standard axioms and
rules of inference for second-order logic plus what’s come to be known
as Hume’s Principle. (His theory of extensions being defunct, of course,
because it engenders Russell’s Paradox.)

We begin by working in a second-order language L whose signature
contains only the function symbol #, which denotes a function from unary
relations to objects and is intuitively read “the number of . . . ”. (See Ap-
pendix A for a complete definition of L.) Next we define a deduction
system for L which consists of the following axioms and rules of inference.

The Deduction System

1. The axioms and rules of inference for first-order logic
2. Axioms and inference rules to handle second-order universal general-

ization and instantiation and second-order existential generalization
and instantation
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3. The usual axioms for first-order equality
4. The Comprehension scheme: for all formulas φ(x1, . . . ,xn), the follow-

ing is an axiom: ∃X∀x1 . . .∀xn(Xx1 . . .xn⇔ φ(x1, . . . ,xn))
5. Hume’s Principle: ∀X∀Y (#X = #Y ⇔ X ∼ Y ), where X ∼ Y is an

abberivation for the formula ∃Z(∀x(Xx⇒∃!y(Y y ∧Zxy))∧∀x(Y x⇒
∃!y(Xy∧Zyx))) and where, again, ∃!x is an abberivation for the usual
formula meaning “there exists a unique x.”

Now it should be noted that when Frege talks about defining numbers,
what he has in mind is a syntactic procedure. We want to be able to give
definitions for the symbols ‘0’, ‘s’, and ‘N’ using only the language L; we
want to be able to translate statements about numbers—in particular the
Dedekind-Peano axioms, into L. Unfortunately, this becomes a messy
affair which requires expanding L using λ-calculus or some other method
of introducing term-forming operators. For example, we want to define
0 := #[x : x , x]. (This notation is taken from Boolos and Heck 1998.)
Suffice to say that if this is done, then each of the Dedekind-Peano axioms,
suitably translated, can be proven in the deduction system given above.
(For detailed accounts, see Wright, 1983; Boolos and Heck, 1998; and Zalta,
1998.)

So Frege’s theorem is the technical result that the Dedekind-Peano
axioms, suitably translated into L—a second-order language with only
one non-logical term, #—are theorems of second order logic plus Hume’s
Principle. There has been substantial philosophical debate over whether
or not Frege’s theorem amounts to a reduction of arithmatic to logic (For
an introduction to the debate, see Hale and Wright, 2001, 2005, Rayo,
2005, and Demopoulos et al, 2005). This question I set aside here, but
there are a number of others worth discussing. First, why frame the entire
endeavour in terms of an operator # which is applied to concepts and read
“the number of . . . ”? The idea, found in §46 of Grundlagen (1884), is given
as follows:

It should throw some light on the matter to consider number in
the context of a judgement which brings out its basic use. While
looking at one and the same external phenomenon, I can say
with equal truth both “It is a copse” and “It is five trees”, or
both “Here are four companies” and “Here are 500 men”. Now
what changes here from one judgement to another is neither
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any individual object, nor the whole, the agglomeration of them,
but rather my terminology. But that is itself only a sign that
one concept has been substituted for another. This suggests
as the answer to the first of the questions left open in our last
paragraph, that the content of a statement of number is an
assertion about a concept. This is perhaps clearest with the
number 0. If I say “Venus has 0 moons”, there simply does not
exist any moon or agglomeration of moons for anything to be
asserted of; but what happens is that a property is assigned to
the concept “moon of Venus”, namely that of including nothing
under it. If I say “the King’s carriage is drawn by four horses”,
then I assign the number four to the concept “horse that draws
the King’s carriage”. (Trans. by J.L. Austin)

Another question which arises is how Frege’s Platonism is engendered
by the forgoing analysis of the natural numbers. Unfortunately, much of the
transparency is lost when we take the “neo-Fregean” approach given above
which adds Hume’s principle as a “principle of logic” and takes the operator
# as primitive, instead of adding as Frege did (the inconsistent) Basic Law V
and giving an explicit definition for # (and then deriving Hume’s Principle
from that definition and Basic Law V).1 Once this definition is given we
get Frege’s “full blooded” analysis of numbers: mathematical terms like ‘0’,
‘1’, ‘2’, . . . really do refer to objects—specifically they refer to equivalence
classes of concepts. Numbers are equivalence classes of concepts.

Most important for Frege’s debate with Hilbert, Frege didn’t just want
to give any old definition of ‘natural number’, ‘successor’, and ‘zero’ from
which the Dedekind-Peano axioms could be derived from principles of
logic. For Frege, there really are numbers: there are, for the terms ‘0’, ‘s(0)’,
‘s(s(0))’, etc, objects denoted by these terms. In giving his definitions Frege
was not only finding—as we would say in contemporary model theory—an
interpretation of a set of formal sentences (the Dedekind-Peano axioms)
which made them true, but instead was setting out objects (numbers) and

1Essentially the definition is as follows. Let C be the set of all concepts X,X1,X2, . . . .
Then equinumerousity, i.e. ∼ as defined above, is an equivalence relation on C and divides
C into equivalence classes. Then for any X, #X is the equivalence class of C containing
X. Thus we could say that N = {x : P recedes∗(0,x) or x = 0}, or, equivalently, we could
sayN = {x : ∃X ∈ C s.t. x = #X}, so long as we added some further clause that ruled out
concepts X with infinite extensions.
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a relation between them (that of predecessor) which the formal sentences
were about all along. For comparison, think of everyone’s favorite philoso-
pher: Aristotle. I can give a definition which determines the reference of
the term ‘Aristotle’. Frege famously says that what determines the reference
of the term ‘Aristotle’ is something like “Plato’s disciple and the teacher of
Alexander the Great”. (Frege 1892: ft.2) Once the reference is fixed there
are basic facts about Aristotle which we can discover, e.g. that he was born
in Stagira, invented logic, and taught that there were four types of causes.
The situation is the same with ‘zero’, ‘successor’, and ‘natural number’,
the only difference being that once the referent of ‘Aristotle’ is defined we
discover facts about him via empirical discovery, while once the basic terms
of arithemtic are defined the basic facts follow from principles of logic and
Hume’s Principle.2

3 Hilbert’s Structuralism
There are dozens and dozens of published writings on the above topic.
Below I’ve listed the material cited above. It is certainly a good start for
those looking to pursue the topic further.

Hilber’s project in the first two chapters of Grundlagen der Geometrie
(1899) is laid out in the introduction as follows:

The following investigation is a new attempt to choose for ge-
ometry a simple and complete set of independent axioms and to
deduce from these the most important geometrical theorems in
such a manner as to bring out as clearly as possible the signif-
icance of the different groups of axioms and the scope of the
conclusions to be derived from the individual axioms. (Trans.
by Townsend)

I will not reproduce all of Hilbert’s axioms—which he doesn’t give in a
formal language—but the primitive or undefined terms in the axioms are
‘point’, ‘line’, ‘plane’, ‘between’, and ‘congruent’.3

2Part of Frege’s project was to show that, contrary to Kant, facts about arithmetic were
“analytic” and not based on intuition. So if one accepts Frege’s point of view on the terms
of arithmetic and accepts Hume’s Principle as a basic “logical principle”, then Frege more
or less succeeds.

3The Dedekind-Peano axioms recall contained the undefined terms ‘zero’, ‘successor’,
and ‘natural number’. ‘Zero’ is a constant term—it names a certain object. None of
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If Hilbert attempted an analysis of the axioms of geometry along the
same lines as Frege’s analysis of the axioms of arithmetic, then just as Frege
defined a setN = {x :Nx}, an element 0 ∈N and a function s :N→N and
then showed that they satisfied the axioms, Hilbert would have defined the
sets P = {x : x is a point}, L = {x : x is a line} and PL = {x : x is a plane} and
defined relations B ⊆ P×P×P and C ⊆ {line segments} × {line segments}
for ‘between’ and ‘congruence’. With all of these defined, Hilbert would
have then shown that the axioms held true.

The crux of this approach, of course, would have been that Hilbert’s
definitions gave a proper, or correct, analysis of the concepts “point”, “line”,
“plane”, “between”, and “congruence”. Such an analysis would presuppose
some sort of Platonism about points, lines and planes: there exist such
objects which the axioms of geometry are about.

But Hilbert does nothing of the sort, of course. What Hilbert does in
chapter 2, after setting out the axioms and proving some theorems in chap-
ter 1, is to show the consistency of the axioms and different independence
relations between subsets of the axioms. What he does not do is attempt
any sort of definitions for the primitive terms like ‘point’.

To show consistency, Hilbert shows how we can interpret the term
‘point’ to mean “ordered pair (u,v) of real numbers” and the term ‘line’
to mean “ratio (u : v : w) of real numbers such that u , 0 , v”.4 He then
interprets the relation of betweenness as some different relation between
triples of these pairs of real numbers, and continuing on in this fashion he
shows that all his axioms of geometry are true under this interpretation.5

That this shows that his axioms are consistent (if the axioms governing
the real numbers are) is seen as follows: suppose that a contradiction could
be derived from the axioms of geometry. Since all the axioms are true when
interpreted as being about pairs of real numbers and whatnot, the axioms
of the reals imply the geometric axioms ‘with the geometric terms replaced
by terms about reals’. So then a contradiction could be derived from the

Hilbert’s terms are constants. ‘Successor’ is a function term—it names a function. Again
none of Hilbert’s terms are functions. ‘Natural number’, though, is a unary relation term,
just like ‘point’, ‘line’, and ‘plane’. ‘Congruent’ is a binary relation term, while ‘between’
is a 3-place relation term.

4Actually, as Hilbert shows one doesn’t need to let u,v,w range over all reals, just some
subset of them that he specifies.

5One must be careful: Hilbert didn’t intend these interpretations as providing any sort
of definitive analysis of ‘point’, ‘line’, etc. They are just one possible interpretation.
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axioms of the reals.
To show the independence of certain groups of axioms from others,

Hilbert essentially does the same thing. He gives (different) interpretations
of the terms ‘point’, ‘line’, ‘plane’, ‘between’, and ‘congruent’ on which the
axioms in the latter group are true while the axioms in the former group
are false.

This shows that the two groups are independent as follows: Say the
axioms in the former group could be derived from the axioms in the latter
group. Then the axioms reinterpreted under the model which made the
latter group true and the former false would also have the same dependence,
we could derive the (reinterpted) former group from the (reinterpted) latter
group. But this is impossible, since the reinterpted former group is true
but the reinterpted latter group is false.

4 The Debate
What did Frege object to about this procedure? There are several ways to
lay out the disagreement, but it essentially was a disagreement over the
nature of mathematical axioms. One place to start is to describe what Frege
would have seen as a “legitimate” proof of the consistency of Hilbert’s
axioms. Essentially a real consistency proof, Frege thinks, would involve
first giving the “proper” or “right” definitions of ‘point’, ‘line’, etc, and
then showing that the axioms are true of the objects so defined. He says:

Axioms do not contradict each other because they are true; no
proof is necessary to establish this fact. Definitions must not
contradict each other. In definig we must formualate our basic
propositions in such a way as to rule out any possibility of
contradiction. (Frege 1903)

The deeper idea here is simply that Frege rejected the idea that the terms of
the axioms, e.g. ‘point’, ‘line’, etc, could be (re)interpreted. For Frege, these
terms, like ‘Aristotle’, have both definite meaning and reference. These
references—the points, the number zero, etc—are the purview of math-
ematics. To reinterpret the axioms is to forget about their mathematical
content.

Another way to approach the dispute is from Hilbert’s perspective. Why,
exactly, did Hilbert see his method as legitemate? The answer is that, at least
at the time of his writing his Grundlagen (1899), Hilbert rejected Frege’s
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view of mathematical axioms and, certainly, anything like mathematical
Platonism. Hilbert specifically rejects Frege’s thoughts concerning the need
for definitions of terms like ‘point’ and ‘natural number’ which provide a
“proper” analysis of the terms. This is stated in both his Grundlagen and
correspondence with Frege:

The axioms of this group define the idea expressed by the word
between, and make possible, upon the basis of this idea, an
order of sequence of the points upon a straight line, in a plane,
and in space. (Hilbert 1899: §3)

The axioms of this group define the idea of congruence or dis-
placement. (Hilbert 1899: §6)

[I]t is surely obvious that every theory is only a scaffolding or
schema of concepts together with their necessary relations to
one another, and that the basic elements can be thought of in
any way one likes. If in speaking of my points I think of some
system of things, e.g. the system: love, law, chimney-sweep
. . . and then assume all my axioms as relations between these
things, then my propositions, e.g. Pythagoras’ theorem, are also
valid for these things. In other words: any theory can always be
applied to infinitely many systems of basic elements.6

Of course, besides these more philosophical concerns there are technical
reasons for prefering Hilbert’s method which neither he nor Frege knew
of at the time. As we know now, there are deep connections between what
can be derived from a set of axioms in a formal system and the set of
interpretations of those axioms, e.g. in first-order logic a contradiction
can be derived from a set of axioms if and only if on every interpretation
at least one of the axioms is false. Thus even if you rejected Hilbert’s
philosophical point of view and held Frege’s, Hilbert’s methods would
afford you a powerful tool for studying the consistency of mathematical
axioms.

To summarize, the dispute is essentially over the nature of mathematical
axioms and, more broadly, what we’re doing when we do mathematics. For

6Letter to Frege of December 29, 1899, as excerpted by Frege (ellipsis Hilbert’s or
Frege’s) in Frege, Philosophical and Mathematical Correspondence, 1980. Quotation taken
from from Blanchette, 2007.
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Frege, when we do mathematics we’re studying some realm of abstract,
mathematical objects—the natural numbers, the points, etc. We need
definitions to fix these objects as the referents of the terms in the axioms.
As Frege says:

For a long time an axiom has always been taken to be a thought
whose truth is known without being susceptible of proof by a
logical chain of reasoning. . . .

Definition in mathematics usually means a determination of the
reference of a word or symbol. Definitions are distinct from all
other mathematical propositions in containing a word or sym-
bol which up to then has had no reference; the definition now
supplies one. All other mathematical propositions (theorems
and ones expressing axioms) must not contain proper names,
concept words, relation words or functional symbols, whose
reference is not already determined. . . .

On the other hand, one can never expect basic propositions
and theorems to determine the reference of a word or symbol.
The rigor of mathematical investigations makes it absolutely
imperative that we should not obscure the difference between
definitions and all other propositions. (Frege 1903: 3–5)

But what Frege denies in at the end of that quote is precisely what Hilbert
affirms: we do not first determine what the referents of the terms are in the
axioms and then say that mathematics is about those things, instead we say
that mathematics is about whatever satisfies the axioms.

I suggest that this is why Hilbert, at least at this early stage, is clearly a
structuralist. The axioms of a mathematical domain provide a “scaffolding
or schema” or, even, a pattern. One who studies, say, geometry is studying
that schema or pattern. What is important in mathematics is not the
referents of the terms—to think that is to get caught up in a dubious
mathematical Platonism—but instead is the schema or pattern given by
the axioms.
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Appendix A: The Language L
Terms:

1. All object variables x,y,z, . . . ,x1, y1, z1, . . . are terms.
2. If f is an n-ary function variable and t1, . . . , tn are terms, f (t1, . . . , tn)

are terms.
3. If X is a unary relation variable, #X is a term.

Formulas:

1. If X is an n-ary relation variable and t1, . . . , tn are terms, Xt1 . . . tn is
formula.

2. If t1 and t2 are terms, t1 = t2 is a formula.
3. If φ and ψ are formulas, φ ⇒ ψ, φ ∨ψ, φ ∧ψ, φ⇔ ψ and ¬φ are

formulas.
4. If φ is a formula and x an object variable, ∀xφ and ∃xφ are formula.
5. If φ is a formula X a relation variable, ∀Xφ and ∃Xφ are formula.
6. If φ is a formula f is a function variable, ∀f φ and ∃f φ are formula.

Appendix B: Models and Frege’s Theorem

A structure M = (D,#M) for L, following the standard semantics for second-
order logic, will consist of a set D—the domain—and a function #M :
P (D) → D from the powerset of D to D which interprets the function
symbol #. An assignment α is a function from the object variables of L to
elements of D, from the (n-ary) relation variables of L to subsets of Dn and
from the (n-ary) function variables of L to functions Dn→D. Satisfaction
is defined as follows:

1. M,α Xt1, . . . , tn if and only if (α(t1), . . . ,α(tn)) ∈ α(X)
2. M,α t1 = t2 if and only if α(t1) = α(t2)
3. M,α φ∧ψ if and only if M,α φ and M,α ψ; and so on for the

other propositional connectives
4. M,α ∀xφ if and only if M,α′ φ for all assignments α′ which

differ from α only on x; and similarly for universal quantification
over relation and function variables

5. M,α ∃xφ if and only if M,α′ φ for some assignment α′ which
differs from α only on x; and similarly for existential quantification
over relation and function variables
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If φ is a sentence of L and M,α φ for all assignments α of M, we call M
a model of φ.

Now we expand L by adding to its signature the constant 0, the function
symbol s and the unary relation symbol N . Call this new language L+. A
structure M = (D,#M ,0M , sM ,NM) of LM will be just like a structure of L,
but will also include a designated element 0M ∈ D denoted by 0, some
function sM : D→ D denoted by s and subset NM ⊆ D denoted by N . We
turn every structure M of L into a structure of L+ as follows.

We begin with three preliminary definitions. For each structure M =
(D,#M) of L, define some subset P recM ⊆ D2 so that (x,y) ∈ P recM if and
only if there’s some subset A ⊆ D and element z ∈ A such that y = #M(A)
and x = #M({w : w ∈ X and w , z}). (Frege calls this the predecessor relation.)
Next, for any subset A ⊆D2 we define when a set F ⊆D is hereditary in the
“A-series”: F is hereditary in the A-series if and only if for all (x,y) ∈ A, if
x ∈ F then y ∈ F. Finally, for all A ⊆D2 we define the set A∗ ⊆D2 by saying
that (x,y) ∈ A∗ if and only if for all F ⊆D, (i) for all z ∈D, if (x,z) ∈ A then
z ∈ F; and (ii) if F is hereditary in the A-series, then y ∈ F. (A∗ has come to
be known as the ancestral of A.)

Now on to the important work: we turn any structure M = (D,#M) of
L into a structure of L+ by setting 0M = #({x : x , x}), sM(x) = y if and only
if (x,y) ∈ P recM and setting NM = {x : (0M ,x) ∈ P rec∗, or x = 0M}. We can
denote this new structure by M+.

Frege’s Theorem: (Model-theoretic Style) If M = (D,#M) is a structure
for L which satisfies Hume’s Principle, then M+ is a model for the Dedekind-
Peano axioms.
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